2018

STATISTICS

(Major)

Paper: 5.1

(Sampling Distribution and Statistical Inference-I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions as directed:

 $1 \times 7 = 7$

- (a) Normal distribution is a particular case of chi-square distribution with
 - (i) n d.f.
 - (ii) (n-1) d.f.
 - (iii) (n-2) d.f.
 - (iv) None of the above
 (Choose the correct option)

- (b) Write down the p.d.f. of a single-order statistic.
- (c) What is relative efficiency?
- (d) The d.f. of a Fisher's t-statistic is 9. What will be the d.f. of the corresponding χ^2 -statistic?
- (e) State one application of F-statistic.
- (f) Maximum likelihood estimators (MLEs) are not necessarily unbiased.

(State True or False)

- (g) State factorisation theorem.
- **2.** Answer the following questions: $2 \times 4 = 8$
 - (a) State two applications of order statistics.
 - (b) State the essentials of 'sufficient estimators'.
 - (c) Show that

$$F(n_1, n_2) = \frac{1}{F(n_2, n_1)}$$

where $F(n_1, n_2)$ represents F variate with n_1 and n_2 d.f.

(d) Show that the sample r-th moment is an unbiased estimator of population r-th moment, if it exists.

- 3. Answer any three of the following: 5×3=15
 - (a) Let $y_1 < y_2 < y_3$ be the order statistics of a random sample of size 3 from the uniform distribution having the density function

$$f(x; \theta) = \frac{1}{\theta}, \quad 0 < x < \theta$$
$$0 < \theta < \alpha$$
$$= 0, \quad \text{elsewhere}$$

Show that $4y_1, 2y_2$ and $\frac{4}{3}y_3$ are all unbiased estimators of θ .

(b) When $v_1 = 2$, show that the significance level of F corresponding to a significant probability p is

$$F = \frac{v_2}{2} (p^{-\frac{v_2}{2}} - 1)$$

where v_1 and v_2 have their usual meanings.

(c) Let x_1, x_2, \dots, x_n be a random sample of n observations from the first kind of beta distribution with parameters α and β . Find the estimators of α and β by the method of moments.

(d) If the random variables X_1 and X_2 are independent and follow χ^2 -distribution with n d.f., show that

$$\frac{\sqrt{n}(X_1-X_2)}{2\sqrt{X_1X_2}}$$

is distributed as Student's t with n d.f. and independently of $X_1 + X_2$.

- Let x_1, x_2, \dots, x_n be a random sample of (e) Cauchy from observations population with parameter µ. Show that the Cramer-Rao lower bound the variance of an unbiased estimator of μ is $\frac{2}{n}$, where n is the sample size.
- **4.** Answer the following questions: 10×3=30
 - (a) Derive χ^2 -distribution and state the applications of χ^2 -statistic. 10

What do you mean by 'minimum variance unbiased estimator (MVUE)? If T_1 and T_2 are two MVUEs of a parameter $\tau(\theta)$, each being of efficiency e, then show that the coefficient of correlation p between them satisfies the inequality

 $2e-1 \le \rho \le 1$ 2+8=10

(b) State three applications of t-distribution. Show that the statistic

$$t = \frac{r}{\sqrt{1 - r^2}} \sqrt{n - 2}$$

is distributed as Student's t with (n-2) d.f. under the null hypothesis $H_0: \rho = 0$, r being sample correlation coefficient.

3+7=10

Or

Define r-th order statistic. Obtain the joint p.d.f. of $X_{(r)}$ and $X_{(s)}$, r < s in a random sample of size n from a population with continuous distribution function $F(\cdot)$. Hence deduce the p.d.f. of sample range $W = X_{(n)} - X_{(1)}$. 2+5+3=10

(c) Obtain the asymptotic distribution of maximum likelihood estimator (MLE). 10

Or

Write a note on the 'method of minimum chi-square'. Find the MLEs of α and β for random sample drawn from the exponential distribution

$$f(x; \alpha, \beta) = y_0 \exp\{-\beta(x - \alpha)\}, \quad \alpha < x < \infty$$

 $\beta > 0$

where y_0 is a constant.

3+7=10

* * *