2018

MATHEMATICS

(General)

Paper: 6.1

(Linear Algebra and Complex Analysis)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer either in English or in Assamese

- 1. Answer the following as directed: 1×10=10
 তলত দিয়াবোৰৰ নিৰ্দেশ অনুসৰি উত্তৰ কৰা:
 - (a) Write the condition for a function φ to be harmonic.
 এটা ফলন φ, হৰাত্মক ফলন হোৱাৰ চৰ্তটো লিখা।
 - (b) Write a basis for $V_4(R)$. $V_4(R)$ ৰ এটা ভূমি লিখা।
 - (c) Write the condition so that union of two subspaces is again a subspace.
 দুটা সদিশ উপক্ষেত্ৰৰ মিলন এটা সদিশ উপক্ষেত্ৰ হোৱাৰ চৰ্তটো লিখা।

8A/802

(Turn Over)

- (d) Write the Cayley-Hamilton theorem. কেইলে-হেমিল্টন উপপাদ্যটো লিখা।
- Write the rank of the following matrix: তলৰ মৌলকক্ষটোৰ কোটি লিখা:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- (f) Write the Cauchy-Riemann equations. कि-वाँरेयानव সমীকৰণসমূহ লিখা।
- If f(z) is analytic and f'(z) is continuous (g) in the circle C, then

যদি f(z) বৈশ্লেষিক, C বক্রত f'(z) অবিচ্ছিন্ন হয়, তেতিয়া

$$\int_C f(z) dz = 0$$

(i)
$$\int_{C} f(z) dz = 0$$
(ii)
$$\int_{C} f(z) dz > 0$$
(iii)
$$\int_{C} f(z) dz < 0$$

$$\int_{C} f(z) dz < 0$$

(iv) None of the above ওপৰৰ এটাও নহয়

(Choose the correct answer)

(শুদ্ধ উত্তৰটো বাছি উলিওৱা)

(h) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined as follows.

ফলন $T: \mathbb{R}^2 \to \mathbb{R}^2$ তলত দিয়া ধৰণে দিয়া আছে।

(i)
$$T(a, b) = (1 + a, b)$$

(ii)
$$T(a, b) = (b, a)$$

(iii)
$$T(a, b) = (a + b, a)$$

(iv)
$$T(a, b) = (a, 0)$$

Which of the above is a linear transformation?

ওপৰৰ কোনটো ৰৈখিক ৰূপান্তৰ?

- (i) If $\lim_{z\to z_0} f(z)$ exists, then it must be যদি $\lim_{z\to z_0} f(z)$ স্থিত হয়, তেতিয়া ই
 - (i) 0/শূন্য
 - (ii) unity/একক
 - (iii) unique/অদ্বিতীয়
 - (iv) None of the above ওপৰৰ এটাও নহয়

(Choose the correct answer) (শুদ্ধ উত্তৰটো বাছি উলিওৱা)

(j) If A is r×s matrix, where r>s, what is the maximum rank of A?
যদি A এটা r×s আকৃতিৰ মৌলকক্ষ হয়, তেতিয়া A ব উচ্চতম কোটি কিমান হ'ব পাবে, য'ত r>s?

- 2. Answer any two of the following: 2×2=4
 তলত দিয়াবোৰৰ যি কোনো দুটাৰ উত্তৰ কৰা:
 - (a) Whether the vectors (2, 0, 3) and (-4, 0, -6) are linearly dependent?
 Express one as the scalar multiple of the other.

(2, 0, 3) আৰু (-4, 0, -6) ভেক্টৰ দুটা বৈখিক পৰতন্ত্ৰ হয়নে? এটাক আনটোৰ স্কেলাৰ পূৰণ হিচাপে প্ৰকাশ কৰা।

- (b) Show that R(C) is not a vector space, where R is the set of reals and C is the set of complex numbers. দেখুওৱা যে R(C) এটা সদিশ স্থান নহয়, য'ত R বাস্তৱ সংখ্যাৰ সংহতি আৰু C জটিল সংখ্যাৰ সংহতি।
- (c) If W_1 and W_2 are subspaces of a vector space V(F), then show that W_1+W_2 is also a subspace of V(F).

 যদি W_1 আৰু W_2 দুটা V(F) সদিশ স্থানৰ উপস্থান হয়, তেন্তে দেখুওবা যে, W_1+W_2 ও এটা V(F)ৰ উপস্থান।
- 3. Answer any three of the following: 2×3=6
 তলত দিয়াবোৰৰ যি কোনো তিনিটাৰ উত্তৰ কৰা:
 - (a) Find the rank of A :

 A ৰ কোটি নিৰ্ণয় কৰা :

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

- (b) Show that (দেখুওৱা যে) $|z_1+z_2| \leq |z_1|+|z_2|$
- (c) Using definition of exponential function, show that $\sin^2 z + \cos^2 z = 1$.

 সূচকীয় ফলনৰ সংজ্ঞা ব্যৱহাৰ কৰি, প্ৰমাণ কৰা যে $\sin^2 z + \cos^2 z = 1$.
- (d) If C is the circle |z-a|=r, then evaluate $\int_C \frac{dz}{z-a}.$

যদি C, |z-a|=r বৃত্তটো হয়, তেতিয়া $\int\limits_C \frac{dz}{z-a}$ ব

- 4. Answer any four of the following: 5×4=20 তলত দিয়াবোৰৰ যি কোনো চাবিটাৰ উত্তৰ কৰা:
 - (a) Show that $W = \{(a, 0) : a \in R\}$ is a subspace of \mathbb{R}^2 . পেখুওৱা যে $W = \{(a, 0) : a \in R\}$, \mathbb{R}^2 ৰ এটা উপস্থান ৷
 - (b) Define linearly independent set. Show that subset of a linearly independent set is linearly independent. বৈথিক স্বতন্ত্ৰ সংহতিৰ সংজ্ঞা দিয়া। দেখুওৱা যে এটা বৈথিক স্বতন্ত্ৰ সংহতিৰ উপসংহতিবোৰ বৈথিক স্বতন্ত্ৰ।
 - (c) Show that the vectors (1, 1, -1), (2, -3, 5) and (-2, 1, 4) of \mathbb{R}^3 are linearly independent.

দেখুওৱা R^3 ৰ ভেক্টৰ (1, 1, -1), (2, -3, 5) আৰু (-2, 1, 4) ৰৈখিক স্বতন্ত্ব।

(d) Show that the linear span L(S) is a subspace of a vector space V(F), where $S \subseteq V$.

দেখুওৰা যে বৈখিক বিস্তাৰ L(S), V(F) সদিশ স্থানব এটা উপস্থান, য'ত $S\subseteq V$.

- (e) Let T: U → V be a linear transformation from vector space U to V. Show that the null space N(T) is a subspace of U(F). ধৰা হল, T: U → V এটা সদিশ স্থান U ৰ পৰা আনটো সদিশ স্থান Vলৈ এটা বৈথিক ক্ষপান্তৰ। দেখুওৱা যে শূন্যস্থান N(T), U(F) ৰ এটা উপস্থান।
- 5. Answer any two of the following : 5×2=10
 তলত দিয়াবোৰৰ যি কোনো দুটাৰ উত্তৰ কৰা :
 - (a) Using Cauchy integral formula, evaluate কৃশ্চি সমাকল সূত্ৰ প্ৰয়োগ কৰি, মান নিৰ্ণয় কৰা

$$\oint_C \frac{e^{2z}}{(z+1)^4} dz$$

where (য'ত), C: |z| = 3.

(b) Show that $f(z) = e^z$ is analytic at every point of the complex plane. পেৰুঙৰা যে $f(z) = e^z$ ফলনটো জটিল সংখ্যাৰ সকলো

বিন্দুত বৈশ্লেষিক।

(c) If
$$\lim_{n\to\infty} z_n = l$$
, prove that $\lim_{n\to\infty} \operatorname{Re}\{z_n\} = \operatorname{Re}\{l\}$ যদি $\lim_{n\to\infty} z_n = l$, প্ৰমাণ কৰা যে $\lim_{n\to\infty} \operatorname{Re}\{z_n\} = \operatorname{Re}\{l\}$

6. Define eigenvalues of a matrix. Find all eigenvalues and eigenvectors of the following matrix:

10

মৌলকক্ষৰ আইগেনমানৰ সংজ্ঞা দিয়া। তলৰ মৌলকক্ষটোৰ সকলোবোৰ আইগেনমান আৰু আইগেনভেক্টৰ নিৰ্ণয় কৰা:

$$A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$$

Or / অথবা

Verify Cayley-Hamilton theorem for the following matrix A. Hence find A^{-1} :

তলৰ মৌলকক্ষ Aৰ বাবে কেইলে-হেমিল্টন উপপাদ্যটো প্ৰতিপন্ন কৰা। লগতে A^{-1} নিৰ্ণয় কৰা:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$

7. Show that the set of all m×n matrices with their elements in a field K is a vector space under usual matrix addition and multiplication of a matrix by an element of the field.

10

দেখুওৱা যে $m \times n$ আকাৰৰ মৌলকক্ষৰ সংহতিটোৱে এটা সদিশ স্থান গঠন কৰে, য'ত মৌলকক্ষৰ মৌলবোৰ এখন ক্ষেত্ৰ K ৰ পৰা লোৱা হৈছে আৰু মৌলকক্ষবোৰে সাধাৰণ মৌলকক্ষৰ যোগ আৰু পূৰণৰ নিয়ম মানি চলে।

Or / অথবা

Find the rank of the following matrix reducing it to the Echelon form:

তলৰ মৌলকক্ষটোক ইকেলন আকাৰত প্ৰকাশ কৰি তাব কোটি নিৰ্ণয় কৰা:

$$A = \begin{pmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{pmatrix}$$

8. State and prove Cauchy integral formula. 10 কশ্চি সমাকল সূত্ৰটো লিখা আৰু প্ৰমাণ কৰা।

Or / অথবা

Define analytic function. Find the analytic function f(z) = u + iv, whose real part is $u = e^{x}(x\cos y - y\sin y)$.

বৈশ্লেষিক ফলনৰ সংজ্ঞা লিখা। এটা বৈশ্লেষিক ফলন f(z)=u+iv উলিওৱা যাৰ বাস্তৱ অংশ $u=e^x(x\cos y-y\sin y)$.

 $\star\star\star$