2015

ECONOMICS

Paper: 2.3

(Mathematical Methods—II)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions: 2×4
 - (a) Explain the term 'pay-off matrix' of game theory.
 - (b) Solve the difference equation given by $y_t = -0.1y_t$.
 - (c) For the utility function $U = (x^2 + y^2)$, find the marginal utility of x and y at x = 1 and y = 2.
 - (d) State the conditions for considering a system of equations to be called linear programming.

- **2.** Answer any *three* from the following questions: 8×3=24
 - (a) Taking an imaginary pay-off matrix, explain how the saddle point is obtained in a two-person zero-sum game.
 - (b) If the demand function of a monopolist is q = 400 20p and the average cost is 5+q/50, where q is output and p is price, find the maximum profit of the monopolist.
 - (c) Taking three commodities and five nutritional requirements, explain the formulation of diet problem of linear programming.
 - (d) Find x and y that maximizes the utility function $U = x^2y^3$, subject to the budget constraint x+4y=10.
 - (e) Explain the concept of Nash equilibrium.

- **3.** Answer any *three* from the following questions: 16×3=48
 - (a) Explain various rules of dominance of game theory.

A and B play a game in which each has three coins, a 5 paise, a 10 paise and a 20 paise. Each selects a coin without the knowledge of the other's choice. If the sum of the coins is an odd amount, A wins B's coin, if the sum is even, B wins A's coin. Find the value of the game and the probabilities of choosing the strategies.

6+10=16

- (b) Explain Harrod-Domar model of growth when (i) the autonomous investment is fixed and when (ii) the autonomous investment is progressive. 6+10=16
- (c) If $u = x^{\alpha}y^{\beta}$ is any individual's utility for two goods, show that his demand for goods is

$$x = \alpha u / (\alpha + \beta) p_x$$
 and $y = \beta u / (\alpha + \beta) p_y$ 16

(d) A product Y is produced with two factors A and B according to the production function

$$Y = 3a^{3/8}b^{5/8}$$

If $p_a = 4$ and $p_b = 3$, find the optimum usage of factors which will produce an output 300, at minimum cost.

If the demand and supply models are given by

 $X_d = \alpha + \beta p_t$ and $X_s = \gamma + \delta p_{t-1}$

where α , β , γ and δ are positive constants and initial price is p_0 , find the time path of price and discuss its nature.

16

ethough A with it quin if the num is

the same and thos probabilities of

two goods, show that his demand for

we direction at T tombard A