3 (Sem 3) ELE M2

2015

ELECTRONICS

(Major)

Paper : 3.2

(Digital System)

Full Marks - 60

Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Choose the correct answer:

1×5=5

- (a) A 16:1 MUX has
 - (i) 2 select lines
 - (ii) 4 select lines
 - (iii) 8 select lines
 - (iv) None of the above

[Turn over

- (b) Unused signal input lines of TTL gate should be
 - (i) Short to ground
 - (ii) Shorted to supply voltage line
 - (iii) Both (i) & (ii) are true
 - (iv) None of the above
- (c) Negative equivalent of a positive binary number can be obtained by
 - (i) 2's complement of the positive number
 - (ii) I's complement of the positive number
 - (iii) 2's complement + 1's complement of the number for the caestions.
 - (iv) None of the above
- (d) A Boolean function of 'n' variables can be implemented by using a
 - (i) $2^{n-1}:1$ MUX
 - (ii) n:1 MUX
 - (iii) (n-1):1 MUX
 - (iv) None of the above

- (e) Boolean addition C+C has the result

 - (i) C and the or of (ii) C and of (ii)
 - (iii) 0 Rodesia (iv) 1 as on 10
- 2. Answer any five questions: 5×5

- (i) Design half and full adder circuits by using 4:1 multiplexers.
- (ii) Draw TTL NAND gate circuit and explain its operation.
- (iii) Explain the working of Master-Slave JK flip-flop with a proper circuit and its timing diagram.
- (iv) Design 2:1 multiplexer with basic logic gates. Implement the design with universal logic gates.
- (v) Design OR, AND, NOT gates with diodes, transistor and resistors.
- (vi) Convert (111101)₂ to decimal. Mention applications of ASCII codes and Hexadecimal data format.
- (vii) Explain briefly about D flip-flop and SR flip-flop.
- 27A/3 (Sem 3) ELE M2
- (3) Turn over

Answer any three questions: $10 \times 3 = 30$

- (i) Describe the basic postulates and theorems of Boolean logic algebra.
- (ii) Mention the characteristics of logic gates and explain them briefly with suitable illustrations.
- (iii) Describe the classification of digital memories and their applications.
- (iv) Design a 3-bit synchronous counter. Illustrate its state table and state equations.

Exolain the working of Massavillave IK

27A/3 (Sem 3) ELE M2 (4)

300(G)