2017

STATISTICS

(Major)

Paper: 1.1

(Descriptive Statistics)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions as directed (reasoning is not necessary): 1×7=7
 - (a) Write whether true or false:"Data obtained from physical experiments are secondary data."
 - (b) Is it true that population is defined as a set of human beings?
 - (c) Is mode a partition value?
 - (d) Is coefficient of variation invariant of change of scale?

(Turn Over)

8A/391

- (e) State the range of multiple correlation coefficient.
- (f) Define geometric mean of the values x_1, x_2, \dots, x_n in terms of arithmetic mean.
- (g) State the values of β_1 and β_2 for a symmetric distribution.

I Descriptive Statistics ;

2. Answer the following questions:

 $2 \times 4 = 8$

- (a) Mention two limitations of statistics.
- (b) If x_i / f_i $(i = 1, 2, \dots, n)$ is a frequency distribution and $u_i = \frac{x_i a}{h}$, then show that $\bar{x} = a + h\bar{u}$. (Symbols have their usual meanings.)
- (c) If r_{XY} is the coefficient of correlation between X and Y, then interpret the cases where—

(i) 17XY = +1; 18111000 serit cert is at [6]

(ii) $r_{XY} = -1$.

(d) State Sheppard's corrections for moments for grouped data.

Valent to someth

(Continued)

3. Answer any three of the following:

5×3=15

- (a) What is a statistical table? Mention with explanation the main parts of a statistical table.
- (b) Define arithmetic mean of a discrete frequency distribution. Show that the algebraic sum of the deviations of observations for the frequency distribution is minimum when taken about mean.
- (c) Define the following:
 - (i) Coefficient of correlation
 - (ii) Regression coefficients
 - (iii) Partial correlation coefficient
 - (iv) Multiple correlation coefficient
 - (v) Correlation index
- (d) What are partition values of a distribution? Explain (with definition) median and quartiles as partition value.
- (e) Obtain the normal equations for fitting of the 2nd-degree parabola $Y = a + bX^2$ on the basis of the n pairs

 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ of values of (X, Y).

4. Answer either (a) or (b):

- (a) Define the following with suitable examples: 2×5=10
 - (i) Qualitative and quantitative data
 - (ii) Normal and ordinal data
 - (iii) Cross-sectional and time-series data
 - (iv) Discrete and continuous data
 - (v) Frequency and non-frequency data
- (b) What are primary data and secondary data? Clearly mention various sources of secondary data. 2+2+6=10

5. Answer either (a) or (b):

- (a) Define raw moments, standard moments and factorial moments of a set of non-frequency numerical data.

 Express the 4th-order standard moment in terms of raw moments. 2+2+2+4=10
- (b) Define standard deviation of the observed values x_1, x_2, \dots, x_n . If $\sigma_1^2, \sigma_2^2, \dots, \sigma_p^2$ are the variances of p different sets containing n_1, n_2, \dots, n_p observed values respectively, then find out the variance of all the $n_1 + n_2 + \dots + n_p$ observed values. 2+8=10

6. Answer either (a) or (b):

(a) Explain the principle behind the method of least squares of fitting a mathematical curve y = f(x) to a set of numerical data viz. $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ on (x, y). Find the normal equations for fitting of the mathematical curve

$$y = a + bx + cx^2 + dx^3$$

to the data on (x, y) mentioned above.

4+6=10

- (b) Write notes on any two of the following: $5\times2=10$
 - (i) Skewness and Kurtosis
 - (ii) Orthogonal polynomials
 - (iii) Graphic representation of data

* * *