out at young testing 0 1 7 crotsuful (b)

COMPUTER SCIENCE

(Major)

Paper: 1.2 (maiatist)

(Basic Electronics)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Fill in the blanks with a correct choice as given in parentheses: $1 \times 7 = 7$
 - (a) A p-n junction diode begins to conduct when forward bias voltage is disknee voltage. (smaller than/greater than/equal to)
 - (b) Bipolar junction transistors are _____ controlled devices. (voltage / charge / current)
 - (c) The magnitude of gate current for any metal oxide semiconductor field-effect transistor is always ____ in ideal condition. (zero/infinite/finite)

(Turn Over)

8A/398

- (d) Inductors store electrical energy in the form of _____. (electric field/magnetic field/charge)
- (e) The role of filter in a rectifier circuit is to remove ____ components. (DC/AC/transient)
- (f) An 8-bit register contains ____ flip-flops. (2/4/8)
- (g) J-K flip-flop can be used as counter in mode. (set/reset/toggle)
- 2. Write short answer of the following questions: 2×4=8
 - (a) Convert decimal number (15)₁₀ into 4-bit binary format.
 - (b) Draw I-V characteristic curve of a p-n junction Zener diode in both forward and reverse biases.
 - (c) A BJT has current gain $\beta = 90$ in common emitter mode. Calculate collector and emitter currents when base current is 20 μ A.
 - (d) State Kirchhoff current and voltage laws.

- 3. Answer any *three* questions of the following: 5×3=15
 - (a) Justify that NAND gate is a universal logic gate.
 - (b) Explain the working of basic RC-coupled bipolar junction transistor amplifier in common emitter mode.
 - (c) Explain the different energy bands of a semiconductor with appropriate illustrations.
 - (d) Discuss the operation of a 3-bit ripple counter with appropriate circuit diagram.
 - (e) Mention the ideal characteristics of an operational amplifier (Op-Amp).
- **4.** Answer any *three* questions of the following:

 10×3=30
 - (a) Distinguish between 'junction fieldeffect transistor' and 'metal oxide
 semiconductor field-effect transistor'.
 Explain the terms 'threshold voltage',
 'pinch-off state' and 'transconductance'
 for metal oxide semiconductor fieldeffect transistor.

 4+2+2=10

- (b) Draw a basic full-adder circuit with logic gates and explain its operation. Distinguish between multiplexer and demultiplexer circuits. 6+4=10
- (c) Draw a DC power supply circuit comprising of centre-tapped full-wave rectifier and shunt capacitance filter. Further, explain the terms 'RMS voltage & current', 'average voltage & current', 'ripple factor' and 'rectifier efficiency'.

2+3+3+1+1=10

(d) Compare and contrast the operation of normal p-n junction diode to lightemitting p-n junction diode. Define the term 'overall quantum efficiency of light-emitting diode'. Mention a few applications of light-emitting diodes.

5+2+3=10

Implement the Boolean function (e) $Y = AB + (BC \oplus AD)$ with logic gates. Distinguish between combinational and sequential logic circuits. Mention the important parameters of a logic gate.

4+4+2=10

Explain the terms 'threshold voltage', pinch-off state and transconductance

semiconductor field-effect translator.

for metal oxide semiconductor fieldeffect transistor.

4+2+2+2+2