2017 alab a Janw

ELECTRONICS

(Major)

Paper: 5.4

(Operating System)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions:

1×7=7

- (a) What is process in operating system?
- (b) What is critical section?
- (c) What is mutual exclusion?
- (d) What is deadlock?
- (e) Why is semaphore used?

8A/302

(Turn Over)

- (f) What is ciphertext?
- (g) What do you mean by cryptography?

ELECTRONICS

2. Answer the following questions:

 $2 \times 4 = 8$

- (a) Why is paging necessary?
- (b) What are the states of a process execution?
- (c) What is the role of semaphore?
- (d) What are the different layers of ISO-OSI model?
- 3. Answer any three of the following: $5\times3=15$
 - (a) Explain the different conditions that are necessary for occurrence of deadlock.
 - (b) How can deadlock be prevented? Explain.
 - (c) Explain process control block (PCB) with proper diagram.
 - (d) Briefly explain segmentation in operating system.
 - (e) Explain the solutions of mutual exclusion in brief.

- **4.** Answer any three of the following: $10 \times 3 = 30$
 - (a) Explain the different layers of ISO-OSI model briefly.
 - (b) Explain round-robin scheduling algorithm with proper example.
 - (c) Explain Dijkstra algorithm for mutual exclusion problem.
 - (d) Write short notes on any two of the following:
 - (i) Parallel and distributed computing
 - (ii) Shell and kernel .
 - (iii) Different types of operating system
 - (iv) TCP/IP
 - (e) Consider the following set of processes with the length of CPU burst time given in seconds. The processes are assumed to arrive in the order P_1 , P_2 , P_3 :

Process	Burst Time
P_1	10
P_2	15
P_3	6

Calculate the waiting time, turnaround time of each process, when first come first serve scheduling algorithm is employed.

* * *