2017

MATHEMATICS

(Major)

Paper : 5.6

(Optimization Theory)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	Fill in the blanks:						
	(a)	(a) Two hyperplanes are said to be parallel if they have the same unit					
	(b)	Convex hull of a set $A \subseteq \mathbb{R}^n$ is the smallest set containing A .					
	(c)	If the dual problem is unbounded, then the primal problem does not have any solution.					

8A/282

(Turn Over)

- (d) In the canonical form of an LPP, the objective function is of the _____ type.
- (e) If the k-th constraint of the primal is an equation, then the corresponding dual variable is ____ in sign.
- (f) In a balanced transportation problem with m origins and n destinations, there are atmost ____ basic variables.
- (g) A system of m linear equations in n unknowns has atmost ____ basic solutions.
- **2.** Answer the following questions: 2×4=8
 - (a) Define a convex cone.
 - (b) Show that the hyperplane

$$H = \{ x \in \mathbb{R}^n : Cx = z \}$$

is a convex set.

(c) Determine the convex hull of the set

$$A = \{x = (x_1, x_2) : x_1^2 + x_2^2 = 1\}$$

(d) Reduce the following LPP to its standard form:

Maximize
$$Z = x_1 - 3x_2$$

subject to

$$-x_1 + 2x_2 \le -15$$
$$x_1 + 3x_2 \ge 10$$
$$x_1, x_2 \ge 0$$

3. Answer any three parts of the following:

(a) Show that the set

is not a convex set.

$$A = \{(x_1, x_2) \in \mathbb{R}^2 : x_1, x_2 \le 1, x_1 x_2 \ge 0\}$$

(b) Obtain all the basic solutions to the following system of linear equations:

$$2x_1 + x_2 - x_3 = 2$$
$$3x_1 + 2x_2 + x_3 = 3$$

How many of the basic solutions are degenerate?

- (c) Show that the set of all convex combinations of a finite number of points of a set $S \subseteq \mathbb{R}^n$ is a convex set.
- (d) Use graphical method to show that there exists an alternative optima for the following LPP:

Maximize $Z = 2x_1 + 4x_2$ subject to the constraints

$$x_1 + 2x_2 \le 5$$

$$x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

- (e) Prove that the dual of the dual of a primal LPP is the primal itself.
- **4.** Use simplex method to solve the following LPP:

Maximize $Z = 12x_1 + 3x_2 + x_3$ subject to

$$\begin{aligned} 10x_1 + 2x_2 + x_3 &\leq 100 \\ 7x_1 + 3x_2 + 2x_3 &\leq 77 \\ 2x_1 + 4x_2 + x_3 &\leq 80 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$

Or

Use Charne's M method to solve the following LPP:

Maximize
$$Z = x_1 + 5x_2$$

subject to

$$3x_1 + 4x_2 \le 6$$

$$x_1 + 3x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

5. Using two-phase method, show that a feasible solution to the following problem does not exist:

Maximize
$$Z = x_1 + 2x_2 + 3x_3$$

subject to $-2x_1 + x_2 + 3x_3 = 2$
 $2x_1 + 3x_2 + 4x_3 = 1$

Or

 $x_1, x_2, x_3 \ge 0$

Formulate the following problem as an LPP and also formulate its dual:

A person requires minimum 10, 12, 12 units of chemicals A, B, C respectively for his garden. A liquid product contains 3, 2, 1 units of A, B, C respectively per jar. A dry

10

product contains 1, 2, 4 units of A, B, C respectively per packet. The person wants to make the investment for his garden as minimum as possible, where it is given that the liquid product sells at $\ref{2}$ per jar and the dry product sells at $\ref{1}$ per packet.

6. A company has three plants A, B, C and three warehouses X, Y, Z. The number of units available at the plants are 60, 70, 80 respectively. The demands at X, Y, Z are 50, 80, 80 respectively. The unit cost of transportation are given in the following table:

	X	Y	Z
Α	1	7	3
В	3	8	9
C	11	3	5

Find the allocation so that the total transportation cost is minimum.

Or

A company has 5 jobs to be done. The following matrix shows the return in \raiseta of assigning *i*-th machine $(i = 1, 2, \dots, 5)$ to the *j*-th job $(j = 1, 2, \dots, 5)$. Assign the five jobs to the five machines so as to maximize the total expected profit:

		Jobs				
		1	2	3	4	5
	Α	5	11	10	12	4
	В	2	4	6	3	5
Machines	C	3	1	5	14	6
	D	6	14	4	11	7
	E	7	9	8	12	5
