2016

MATHEMATICS

(Major)

Paper: 5.2

(Topology)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions:

 $1 \times 7 = 7$

- (a) Give an example to show that in a metric space, a Cauchy sequence may not always be convergent.
- (b) Find the derived set, interior and closure of the set

$$A = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$$

in the real line R with the usual metric.

(c) For $x, y \in \mathbb{R}$, define $d(x, y) = |x^2 - y^2|$. Examine whether d is a metric on \mathbb{R} .

- (d) Let $X = \{a, b, c\}$. Which of the following sets is not a topology on X?
 - (i) $\{\phi, X\}$
 - (ii) $\{\phi, \{a\}, X\}$
 - (iii) $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$
 - (iv) $\{\phi, \{a\}, \{b\}, \{c\}, X\}$
- (e) Let X be any set and let $\mathscr{T} = \{\phi, A, B, X\}$, where A and B are non-empty disjoint proper subsets of X. Find the conditions A and B must satisfy in order that \mathscr{T} will be a topology on X.
- (f) Show that the usual metric on \mathbb{Z} (the set of all integers) induces the discrete topology for \mathbb{Z} .
- (g) Define Hilbert space and give an example.
- 2. Answer the following questions: 2×4=8
 - (a) Every subset of a discrete metric space is closed. Justify whether it is true or false.
 - (b) Let $X = \{a, b, c, d, e\}$ and let $S = \{\{a, b\}, \{b, c\}, \{a, d, e\}\}$. Find the topology on X generated by S.
 - (c) Show that every normed linear space is a metric space.
 - (d) Prove the parallelogram law in an inner product space $(X, <\cdot, \cdot>)$.

(Continued)

- 3. Answer the following questions:
- 5×3=15
- (a) Let (X, d) be a complete metric space and let Y be a subspace of X. Prove that Y is complete if and only if Y is closed.
- (b) Let (X, \mathcal{T}) be a topological space and $A \subset X$. Show that A is closed if and only if A contains each of its limit points.

01

Prove that a mapping f from a topological space X into another topological space Y is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for every set $A \subset X$.

(c) Show that \mathbb{C}^n is a Banach space.

Or

Let $(X, <\cdot, \cdot>)$ be an inner product space. Prove that for all $x, y \in X$,

$$4\langle x, y \rangle = ||x + y||^2 - ||x - y||^2 + i ||x + iy||^2$$
$$-i ||x - iy||^2$$

- 4. Answer the following questions: 10×3=30
 - (a) Prove that the set \mathbb{R}^n of *n*-tuples $x = (x_1, x_2, \dots, x_n)$ of real numbers is a complete metric space with respect to the usual metric.

10

State and prove Cantor's intersection theorem for metric spaces.

10

(b) Prove that in a metric space (X, d), the union of a finite number of nowhere dense sets is nowhere dense. Again, if A is nowhere dense in X, then show that each open sphere in X contains a closed sphere which contains no point of A.

6+4=10

Or

Let X be a metric space and Y be a complete metric space. Let A be a dense subspace of X. If $f: A \rightarrow Y$ is uniformly continuous, then prove that f can be extended uniquely to a uniformly continuous mapping $g: X \to Y$.

10

Prove that a subset A of \mathbb{R} is compact if and only if it is closed and bounded.

Or

Prove that the continuous image of a connected metric space is connected. Also show that the range of a continuous real-valued function defined on a connected space is an interval.

10
