2017

ELECTRONICS

(Major)

Paper: 5.5

(Network Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Give objective-type answer to the following : $1 \times 7 = 7$
 - (a) What do you understand by passive element of a network?
 - (b) What is the internal impedance of an ideal voltage source?
 - (c) Define the tree of a network.
 - (d) Write down the expression for energy consumed in a capacitor.
 - (e) What is the value of Laplace transform of t^n ?
 - (f) What is decibel unit of measurement?
 - (g) Write down the expression for Fourier coefficient b_n .

8A/303

(Turn Over)

- 2. Give very short answers to the following (any four): 2×4=8
 - (a) Derive an expression for resonance frequency of a series R-L-C network.
 - (b) Evaluate Laplace transform of an integral.
 - (c) Define poles and zeros of a network function.
 - (d) What is band elimination filter?
 - (e) What is network synthesis?
- **3.** Write short answers to any *three* of the following: $5\times3=15$
 - (a) For the network given below, find out Thevenin's equivalent network:

- (b) Evaluate Laplace transform of the following:
 - (i) coshat
 - (ii) $\frac{d}{dt} f(t)$

- (c) State and proof the maximum power transfer theorem.
- (d) Draw the circuit diagram of a secondorder Butterworth filter and discuss briefly about the circuit.
- (e) Discuss briefly about symmetrical and lattice networks with necessary diagram.
- **4.** Answer any *three* of the following: 10×3=30
 - (a) Synthesize the one-port L-C network using Foster's second form of equivalent network and evaluate the elements of the network.
 - (b) For a band-pass filter, show that

$$f_0 = \sqrt{f_1 f_2}$$

where f_0 is cut off frequency and f_1 and f_2 are two bands of frequency of the filter.

- (c) Derive the short circuit admittance parameter of a two-port network.
- (d) Write short notes on the following:
 - (i) Passive π and T section filter
 - (ii) Fourier analysis of a periodic signal

* * *