2016

MATHEMATICS

(Major)

Paper: 5.1

(Real and Complex Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions:

 $1 \times 7 = 7$

- (a) State a sufficient condition for the continuity of a real-valued function of two variables.
- (b) Give an example of a real-valued function which is bounded but not Riemann integrable.
- (c) A real-valued function f is defined on [a, b] having a singular point in its domain. State whether f is Riemann integrable or not.

(Turn Over)

A7/122

(d) A function f(z) = u(x, y) + iv(x, y) is defined such that

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

State whether f is analytic or not.

(e) Evaluate

$$\frac{1}{2\pi i} \oint_C \frac{\cos \pi z}{z^2 - 9} dz$$

where C is a closed rectangle with vertices at $z = 2 \pm i$, $-2 \pm i$.

- (f) State Cauchy's integral formula.
- (g) Define conformal mapping.
- **2.** Answer the following questions: $2 \times 4 = 8$
 - (a) Discuss the continuity of the following function at (0, 0):

$$f(x, y) = \frac{xy^3}{x^2 + y^6} , (x, y) \neq (0, 0)$$
$$= 0 , (x, y) = (0, 0)$$

(b) Show that the integral

$$\int_0^1 x^{m-1} e^{-x} dx$$

is convergent for m > 0.

(c) Prove that if w = f(z) = u + iv is analytic in a region R, then

$$\frac{dw}{dz} = \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$$

where u, v are functions of two variables x, y.

(d) Find the fixed points of the transformation $w = \frac{2z-5}{z+4}$.

3. Answer any three parts:

5×3=15

(a) I

$$u = \cos x$$
, $v = \sin x \cos y$

 $w = \sin x \sin y \cos z$

then show that

$$\frac{\partial(u, v, w)}{\partial(x, y, z)} = (-i)^3 \sin^3 x \sin^2 y \sin z$$

The symbols have their usual meanings.

(b) Prove that if f is a bounded function on [a, b], then to every $\varepsilon > 0$, there corresponds $\delta > 0$ such that

$$U(p, f) < \int_a^b f dx + \varepsilon$$

The symbols have their usual meanings.

(c) Show that the integral

$$\int_0^{\pi/2} \log \sin x \, dx$$

is convergent. Hence evaluate it.

(d) Prove that if f(z) and g(z) are analytic at z_0 and $f(z_0) = g(z_0) = 0$ but $g'(z_0) \neq 0$, then

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$$

(e) Prove that if f(z) is integrable along a curve C having finite length L and if there exists a positive number M such that $|f(z)| \le M$ on C, then

$$|\int_C f(z) \, dz| \le ML$$

- 4. Answer either (a) or (b):
 - (a) (i) If v is a function of two variables x and y, and $x = r\cos\theta$, $y = r\sin\theta$, then prove that

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 v}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} + \frac{1}{r} \frac{\partial v}{\partial r}$$
 5

(ii) Find the shortest distance from the origin to the hyperbola

$$x^2 + 8xy + 7y^2 = 225, z = 0$$
 5

(b) (i) Verify the convergence of the integral

$$\int_0^\infty \frac{x \tan^{-1} x}{(1 + x^4)^{1/3}} dx$$
 5

(ii) Find the value of p such that

$$\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$$

converges absolutely.

- 5. Answer either (a) or (b):
 - (a) (i) Prove that if a function f is Riemann integrable on [a, b], then f² is also Riemann integrable on [a, b].
 - (ii) A function f is defined on [-1, 1] as follows:

$$f(x) = 1, x \neq 0$$

= 0, x = 0

Show that f is integrable on [-1, 1] and calculate its value.

(Turn Over)

5

5

5

(b) (i) Show that the function f defined as follows

$$f(x) = \frac{1}{2^n}$$
, when $\frac{1}{2^{n+1}} < x \le \frac{1}{2^n} (n = 0, 1, 2, \cdots)$
= 0, $x = 0$

is integrable on [0, 1]. Also evaluate

$$\int_0^1 f \, dx$$
 5

(ii) If f and g are both differentiable on [a, b] and if f', g' are both integrable on [a, b], then show that

$$\int_{a}^{b} f(x) g'(x) dx = [f(x) g(x)]_{a}^{b}$$
$$-\int_{a}^{b} g(x) f'(x) dx$$

- 6. Answer either (a) or (b):
 - (a) (i) It

$$u_1(x, y) = \frac{\partial u}{\partial x}$$

and $u_2(x, y) = \frac{\partial u}{\partial y}$

then prove that

$$f'(z) = u_1(z, 0) - iu_2(z, 0)$$
 5

(ii) Prove that $\frac{d}{dz}(z^2 \overline{z})$ does not exist anywhere.

(b)

Evaluate

$$\oint_C \overline{z}^2 dz$$

around the circle |z-1|=1.

5

5

(ii) Find a bilinear transformation which maps z = 0, -i, -1 into w = i, 1, 0 respectively.
