2016

MATHEMATICS

(Major)

Paper: 1.1 del anore

(Algebra and Trigonometry)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

- 1. Answer/Choose the correct option: 1×10=10
 - (a) Let $A = \{1, 2, 3, 4\}$. Give an example of a relation in A which is transitive but not reflexive or symmetric.
 - (b) Which statement is correct?
 - (i) $f: R \to R$ given by $f(x) = x^2$ is injective.
 - (ii) $f: N \to N$ given by f(x) = 2x is surjective.

A7/377

(Turn Over)

- (iii) $f: N \to E$ given by f(x) = 2x is not surjective. (E is the set of nonnegative even integers)
- (iv) $f: N \to N$ given by $f(x) = x^2$ is injective.
- (c) If m, n and x are three elements of a group and mnxnm = y, then
 - (i) $x = n^{-1}m^{-1}ym^{-1}n^{-1}$
 - (ii) $x = nm^{-1}ym^{-1}n$
 - (iii) $x = m^{-1}n^{-1}yn^{-1}m^{-1}$
 - (iv) $x = m^{-1}n^{-1}ym^{-1}n^{-1}$
- (d) For the group $\langle Z, + \rangle$ and normal subgroup $N = \{3n | n \in Z\}$, what is the order of the quotient group $\frac{Z}{N}$?
- (e) If n is an integer, then $(1+i)^n + (1-i)^n$ equals
 - (i) $2^{\frac{n}{2}+1}\cos\frac{n\pi}{4}$
 - (ii) $2^{\frac{n}{2}}\cos\frac{n\pi}{4}$
 - (iii) $2^{\frac{2}{n}-1}\cos\frac{\pi}{4}$
- (iv) $2^{\frac{n}{2}}\sin\frac{n\pi}{4}$

(f) Find out the correct statement(s):

(i)
$$(1 + \omega + \omega^2)^3 - (1 - \omega + \omega^2)^3 = -1$$

(ii)
$$(1 + \omega + \omega^2)^3 - (1 - \omega + \omega^2)^3 = 1$$

(iii)
$$(1 + \omega + \omega^2)^3 - (1 - \omega + \omega^2)^3 = 0$$

(iv)
$$(1 + \omega + \omega^2)^3 - (1 - \omega + \omega^2)^3 = \frac{i + \sqrt{3}}{2}$$

(g) If α , β , γ , δ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$, then the value of $\Sigma \alpha^2 \beta \gamma$ is

(i)
$$-pq + 3r$$

(iii)
$$q^2 - 2pr + 2s$$

(h) The rank of the matrix

$$A = \begin{bmatrix} 1 & a & b & 0 \\ 0 & c & d & 1 \\ 1 & a & b & 0 \\ 0 & c & d & 1 \end{bmatrix}$$

15

- (i) 1
- (ii) (
- (iii) 2
- (iv) 3 mile to shape a lease of stops

- (i) If A is any square matrix, then find the correct statement(s):
 - (i) A + A' is not symmetric
 - (ii) A-A' is symmetric
 - (iii) A-A' is skew-symmetric
 - (iv) A + A' is skew-symmetric
- (j) A matrix is idempotent if $A^2 = A$. If AB = A and BA = B, then show that A is idempotent.
- 2. Give answers to the following questions:

 $2 \times 5 = 10$

- (a) With an example show that we can have maps f and g such that g o f is one-one and onto but f need not be onto and g need not be one-one.
- (b) Let A and B be two square matrices of same order. If AB = I, prove that BA = I.
- (c) Find the centre of S_3 where $S = \{1, 2, 3\}$.
- (d) If $\sin(\alpha + i\beta) = x + iy$, prove that $x^2 \csc^2 \alpha y^2 \sec^2 \alpha = 1$
- (e) How many complex roots does the equation $x^4 + 2x^2 + 3x 1 = 0$ have? Apply Descartes' rule of signs for finding the complex roots.

3. Answer any four parts:

 $5 \times 4 = 20$

- (a) Let $f: A \to B$ and $g: B \to C$ be one-to-one and onto functions. Show that $(g \circ f)^{-1}$ exists and $(g \circ f)^{-1} = f^{-1} \circ g^{-1} : C \to A$.
- (b) If H and K are finite subgroups of G of order O(H) and O(K) respectively, then prove that

$$O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$$

- (c) Prove that a subgroup H of a group G is a normal subgroup of G if and only if the product of two right cosets is again a right coset of H in G.
- (d) Deduce the following series:

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots + \frac{(-1)^{n-1}x^{2n-1}}{2n-1} + \dots$$

- (e) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the equation whose roots are $\alpha\beta + \beta\gamma$, $\beta\gamma + \gamma\alpha$, $\gamma\alpha + \alpha\beta$.
- (f) Reduce the following matrix to normal form and find its rank:

$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

A7/377

- 4. Answer any one part:
- 10
- (a) (i) Show that a subgroup of index 2 in a group G is a normal subgroup of G.
 - (ii) In a set of n elements define S_n and A_n where the symbols have their usual meanings.
 - (iii) Show by example that a quotient group may be Abelian but parent group of the quotient group may not be Abelian.

 4+2+4
- (b) (i) Show that an infinite cyclic group has precisely 2 generators.
 - (ii) Show that a group G of prime order cannot have non-trivial subgroups.
 - (iii) Let $a, n (n \ge 1)$ be any integers s.t. g.c.d. (a, n) = 1. Prove that

$$a^{\phi(n)} \equiv 1 \pmod{n} \qquad \qquad 4+2+4$$

5. Answer any one part :

- 10
- (a) (i) Show that the roots of the equation $Z^n = (Z+1)^n$ where n is a positive integer >1 are collinear points in the Z plane.
 - (ii) Using De Moivre's theorem, solve $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = 0$

- (iii) If $\sin(\theta + i\phi) = \tan(x + iy)$, then show that $\frac{\tan \theta}{\tan \phi} = \frac{\sin 2x}{\sinh 2y}$. 3+4+3
- (b) (i) Expand $\sin^4 \theta \cos^2 \theta$ in a series of cosines of multiples of θ .
 - (ii) If $x < (\sqrt{2} 1)$, then prove that

$$2\left(x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots\right) = \frac{2x}{1 - x^2} - \frac{1}{3}\left(\frac{2x}{1 - x^2}\right)^3 + \frac{1}{5}\left(\frac{2x}{1 - x^2}\right)^5 - \dots$$

(iii) Show that

$$\tan\left(i\log\frac{a-ib}{a+ib}\right) = \frac{2ab}{a^2 - b^2}$$
 3+4+3

6. Answer any two parts :

- 5×2=10
- (a) If α , β , γ , δ are roots of the biquadratic equation $x^4 + px^3 + qx^2 + rx + \delta = 0$, find the value of $\Sigma \alpha^2 \beta \gamma$ and $\Sigma \alpha^2 \beta^2$.
- (b) Solve by Cardan's method:

$$x^3 - 6x^2 - 6x - 7 = 0$$

(c) Find the equation whose roots are squares of the differences of the roots of the equation $x^3 + x + 2 = 0$ and deduce from the resulting equation the nature of the roots of the given cubic.

A7/377

(Turn Over)

(d) Solve the equation () in the

$$16x^3 - 44x^2 + 36x - 9 = 0$$
,

given that roots are in harmonic progression.

7. Answer any two parts:

 $5 \times 2 = 10$

- (a) Define skew Hermitian matrix. Prove that every Harmitian matrix can be written as A = B + iC, where B is real and symmetric and C is real and skew-symmetric.
- (b) (i) If a non-singular matrix A is symmetric, prove that A^{-1} is also symmetric.

2

(ii) If A is a $n \times n$ non-singular matrix, then prove that $(A)^{-1} = (A^{-1})'$.

3

(c) Investigate for what values of a and b the simulteneous equations

$$x_1 + x_2 + x_3 = 6$$

$$x_1 + 2x_2 + 3x_3 = 10$$

$$x_1 + 2x_2 + ax_3 = b$$

have

- (i) no solution;
- (ii) an unique solution;
- (iii) an infinite number of solutions.

of the roots ** * a stone out to

3 (Sem-1) MAT M 1

A7-5000/377